History of Wide Area Surveillance work in the visual/IR domain

Jason de Villiers

Optronic Sensor Systems
Defence Peace Safety and Security
Council for Scientific and Industrial Research

12th Aardvark Roost Little Crow Mini Conference IMT, Simonstown May 2015 AD

Agenda

- Council for Scientific and Industrial Research
- Close In Surveillance
- 3 Automated Camera Calibration Suite
- Centralised WASS Prototypes
- 5 Rugged Modular IR Enhanced WASS
- 6 From Ocean to Battlefield
- Where we are now
- 8 Future development plans for WASS
- Q & A

Council for Scientific and Industrial Research

CSIR

- South African Government national research center.
- Founded in 1945
- Employs ± 3000 people.
- Research areas:
 - Defence
 - Biomedical
 - Mining
 - Built Environment
 - Natural Resources
 - IT
 - Material Sciences
 - LASER systems

Defence (DPSS)

- Optronics
- RADAR and Electronic Warfare
- Aeronautics
- Integrated Systems
- Command and Control
- Landward Sciences
- Special Operations

Council for Scientific and Industrial Research

Optronic Sensor Systems

- Image processing
- Surveillance
- Camouflage
- IR simulation
- IR counter measures
- Optical design
- Test and evaluation
- Optomechatronics

The Need for WASS

Asymmetric Warfare:

- Gorilla warfare
- Vast damage at low cost
- Opponents pose as civilians
- Small wooden craft with low RADAR signature
- Need to monitor immediate area around the ship
- Developed at request of SAN
- USS Cole, Aden Yemen, Nov 2000
- USNS Rappahannock, Jebel Ali, UAE, July 2012

Why go for an optical solution?

Humans:

- ±175° Field of View (FOV)
- Built in advanced image processing
- Get detail on a small 2° cone
- See what they expect to see
- Fight with boy/girl friends
- Require body/sleep/smoke breaks
- Poor night vision

Cameras:

- Configurable FOV
- Can observe in low light and adverse conditions
- No requirements for sleep, etc
- No built in image processing
- Can store captured images for later retrieval

How WASS works

- Cameras are geometrically calibrated, including their 6 DOF relative positions
- Camera outputs are photogrammetrically stitched in Real-Time into a seamless panorama
- Images are stabilised for ship motion
- Background modelling is performed, to counter cloud and ocean movement
- Moving targets are identified
- Targets are tracked

Feature vs Photogrammetric Stitching

Why calibrate the cameras?

- Allows wide angle lenses to be used.
- Allows any camera with and FOV or spectrum to be used.
- Leads to real-time stitching.
- Allows designation from stitched image.

Distortion characterisation, according to the Internet

How about non-visual cameras?

Automated Camera Calibration Suite

Desired characteristics

- Automatic
- Repeatable
- Precise and accurate
- Adaptable to different spectra, FOVs and resolutions
- Accept differing camera output formats
- Apparatus is self calibrating

Required Outputs

- Distorted
 Undistorted mapping
- Undistorted → distorted mapping
- Focal Length Determination
- Camera→mount pose
- Mount→reference pose

ACCS: Overview

Physical Components

- Robotic arm
- Optical bench
- Kinematic camera mounts
- Swappable energy sources
- Precision mechanical jig
- PleoraTMGigE converters
- Computer

Principals of Operation

- Place camera on mount
- Attach energy source to robot
- Move robot through sequence of discrete points
- Capture energy source image coordinates
- Process coordinates

Distortion Characterisation

WASS-60: Proof of Concept

Overview

- 4 1.3MP Cameras
- 60° by 20° stitched image
- Stitching at 360FPS
- Stitching and background at 100FPS
- Stitching, BG & tracking at ± 25FPS
- Field trial at Naval Station Durban in 2008

WASS-360: Omnidirectional Surveillance

Overview

- 4 1.3MP cameras & 1 2MP camera
- Large FOV high distortion 4.8mm lenses
- 360° by 60° stitched image
- 3 Week trial in Simonstown
- Deployed on IMT's Sealab research vessel
- Deployment on (docked) SAS Amatola
- Deployed at Paardefontein in May 2013

WASS-360 Highlights

Milestones

- Omnidirectional panorama
- Sinusoidal stabilisation
- Kalman and Particle filter tracking
- Appearance modelling
- Multi-target tracking
- GIS alignment

- Highlight targets from external RADAR
- Show FOV of turreted systems
- Designate high-zoom cameras and tracking RADARs
- Streaming of stitched image

WASS-360 Video Clips

WASS-90: Living outside the lab

Overview

- Modular system
- Each camera module covers 90°
- Each module has Full-HD Output
- Provision made for Micro-bolometers
- In-field calibration algorithms
- Ruggedised: weather proof & EMI shielded
- Deployed on SAS Spioenkop for "3-6 month" sea trial

WASSABBI: Moving to 24h capability

Incorporating SAN Feedback

- Evolution of WASS-90
- First shown at AAD in Sep 2012
- Incorporates LWIR images
- Real time Image fusion
- Improved close range stitching
- Remote power cycling of cameras

WASSABBI: Improved Near-Field Stitching

WASSABBI Fusion Types

WASS90+: Bringing it all together

- Evolution of WASS-90 and WASSABBI
- Maritime hardened from start
- No COTS electronics
- Real time Image fusion adjustment
- Improved close range stitching
- Remote power cycling of cameras
- Ease of installation
- Improved user interface
- Improved Integration with CISS

Modular WASS WASS-60/360 WASSAP And Then? Q & A 00000

WASS90+ Tunable Fusion

WASSAP: CISS for Armoured Platforms

What is WASSAP?

- 180° fused system on a Ratel
- 5 Colour 1.3 MP cameras
- 3 LWIR Cameras
- Improved driver situational awareness
- Improved targeting for commander
- Upgradeable to 360° system
- Modular & removable

WASSAP: CISS for Armoured Platforms

Features and Benefits

- Independant views for driver and commander
- Fixed view for driver to mimimise disorientation
- Pan and Zoom in commander view
- Cycle between raw and fused modes in commander view
- Command center integration through DPSS' command and control portal: CMore.
- Colour cameras and Colour fusion.

WASSAP Screen Shots

Official Trailer

State of Affairs

Currently Have

- Modular visual WASS system
- Robust tracking of manually selected targets
- Second order ruggedisation
- Ability to calibrate cameras of different FOV & spectra

Achievements

- 14 Papers on calibration, stitching, stabilisation and ranging
- 6 Field trials / deployments
- 4 Popular media articles covering WASS, 1 TV show
- 1 International patent

State of Affairs: Current developments

Augmented Reality

- Head mounted display
- Head tracker
- Cut out portion of panorama corresponding to Head angle
- Different view per eye
- Display on HMD
- Training simulators
- One camera array, multiple viewers
- Virtual periscope
- See through armour

State of Affairs: Current developments

Embedded Stitching

- FPGA stitching
- "SWaP" optimised
- Can use smaller cameras and no frame grabbers

New uses

- Harbour patrol and other small vessels
- Aircraft and UAVs
- RHIBs
- Paramilitary

State of Affairs: Current developments

Current Developments

- Test and deploy WASS90+
- Helmet mounted displays for WASS: See through armour
- Improve real-time image fusion
- Automatic target detection
- Improve tracking algorithms
- Mini-WASS systems

4 □ > 4 □ > 4 □ > 4 □ >

The problems we want to solve

Riverine & Ground Scenarios

- WASS on a moving vehicle/vessels
- WASS versions for large & small platforms
- Busy thoroughfares
- Threats on one or both sides
- 24 Hour capability
- Targets amongst static obscuring background objects

The problems we want to solve

Base & Border Protection

- Static deployment
- Detect intruders
- Vast areas to be covered
- Unmanned systems
- 24 Hour capability

Thank you for your attention. Questions?

